Blackberry (Rubus sp.) are native (usually) woody shrubs or brambles. They are members of the Rosaceae, or rose family, which includes over 600 species and developed varieties of blackberries, raspberries and dewberries in the Rubus genus. Many improved varieties of blackberry have been developed by plant breeders, and blackberry species readily hybridize, so some species can be difficult to differentiate and there can be large differences between species. Due to this wide variation, this publication concentrates on Oklahoma blackberry, Rubus oklahomus Bailey. Oklahoma blackberry is common in the eastern portions of Oklahoma and Texas in areas that typically receive more than 25 inches of annual rainfall. Other blackberry species occur throughout North America, having different growth and habitat characteristics, and potentially requiring different management strategies.

**Identification**
Blackberry is a warm-season perennial shrub with upright, arching stems. The stems are armed with many sharp thorns or prickles. The stems can grow several feet tall and intertwine to form virtually impenetrable thickets. The leaves are alternate and palmately compound with three to five leaflets with serrated edges. Blackberry blooms from early spring through early summer with five-petalled, showy white flowers. The fruit consists of an aggregation of drupelets that change from red to black when mature. Blackberry reproduces from seed, basal buds on root segments and from arcing ends of stems that reach the soil.

**Management Considerations**
Blackberry management depends on the goals for the property. The fruit is a favorite ingredient in jellies, pies and cobblers, so it may be a desirable plant in some situations. If wildlife management is a primary goal, the fruit is a valuable food source for many wildlife species. The thickets can provide good cover for some species, so maintaining blackberry as part of a diverse plant community can be beneficial. If livestock or forage production is the primary goal, then blackberry is detrimental due to reduced forage production and limited access to the forage that is produced. The stout blackberry prickles may also cause injury and subsequent infection to livestock traversing or attempting to utilize forage in infested pastures.

**Management Methods**

**Prescribed fire**
A well-planned and executed prescribed fire usually top-kills blackberry, but it readily resprouts from seeds and buds on underground rhizomes. Maintaining a short-interval prescribed burning program suppresses blackberry and generally prevents it from developing into a significant problem but does not eliminate it from the landscape. Prior to initiating a prescribed burning program, obtain all necessary training and become familiar with laws pertaining to prescribed burning in a specific locality.
Mechanical methods
Blackberry may be managed by mowing when terrain and surrounding tree and brush species permit. Blackberries readily resprout from basal or rhizomatous buds, so mowing does not provide long-term control. Mowing can be beneficial to remove existing top growth and allow livestock access to desirable forages. However, mowing can also leave stobbs that can contribute to foot problems. Mowing can also be used to remove old, dead canes and reduce the mass of a thicket in preparation for subsequent herbicide application. If mowing is for this purpose, do not apply the herbicide for at least 12 months after mowing.

Biological control
Intensive stocking with browsing species, such as goats, can reduce blackberry density and open up areas to sunlight to allow desirable grasses to establish. Goats have a high preference for blackberry, among many other plant species, and will aggressively consume the leaves and berries. Depending on stocking rate, goats may be able to provide significant control of blackberry within three years. Considerations for using goats for blackberry management include proper installation and maintenance of goat-proof fencing, predator control, parasite management, and providing water, shelter and adequate handling facilities.

Chemical control
There are several herbicides labeled for blackberry control or suppression. Due to blackberry plants’ extensive root systems and ability to resprout from secondary buds, more than one application is often necessary to obtain satisfactory control. A complicating factor affecting herbicide efficacy is the differences in various blackberry species’ susceptibilities to herbicides. Although control recommendations vary, the following are the most successful in our experience.

Spot treatments
The preferred application method is a high-volume foliar treatment of individual plants or thickets. Apply 0.25% to 0.5% triclopyr (Example: Remedy
Broadcast treatment

Broadcast treatments are not typically recommended for blackberry control due to the scattered nature of most blackberry infestations, high cost of herbicides, difficulty obtaining satisfactory spray coverage and inconsistent control. If a broadcast treatment is necessary due to high plant density, apply 1 to 2 quarts triclopyr (Example: Remedy Ultra®) or 3 to 8 pints triclopyr and fluroxypyr premix (example: PastureGard®) per acre in sufficient volume to provide good coverage of the foliage. Use a high-quality, non-ionic surfactant at 0.25% to 0.5% of the total mix volume. Apply from the full bloom stage in late spring through the berry drop stage in the fall. Do not apply during periods of stress from drought, frosts, heavy insect damage, etc. Do not apply treatments within 12 months of mowing or burning of the blackberries as control is significantly reduced.

Another broadcast foliar treatment reported by some researchers to provide suppression of blackberry is applying 0.3 to 0.4 ounces metsulfuron-methyl (example: Cimarron Max Part A®) per acre with 0.25% to 0.5% high-quality, non-ionic surfactant. Thorough coverage is critical, so using a high spray volume per acre improves efficacy. Apply any time after the blackberries have fully expanded leaves and are not stressed by drought, frost, heavy insect damage, etc. The herbicidal symptoms are slower to appear, but other researchers have reported better long-term control with this treatment than with other herbicides. The better control reported by these researchers might be due to treating a different species of blackberry than Rubus oklahomus. It should be noted that metsulfuron-methyl significantly damages bahiagrass, so this treatment should not be used where bahiagrass is a desired forage.

The procedure for making a high-volume foliar application depends on the available equipment, and size and density of the blackberry thicket. For small thickets, a small sprayer with a hand-wand mounted on a four-wheeler can work quite well. For larger or very dense thickets, a tractor-mounted or towed sprayer with a spray gun can be used to spray from the perimeter into the thicket from all sides. If the thicket is so large that the spray gun cannot provide good coverage into the interior, it may take more than one year to reduce the size of the thicket until it can all be treated.
There are several herbicide premixes or tank mixes containing 2,4-D, dicamba, picloram, aminopyralid, etc., that can be used to increase the spectrum of weeds controlled, but it appears the majority of blackberry control is from triclopyr or metsulfuron-methyl. If there are enough other additional species in the pasture that need to be managed, using one of these mixes may be justified. In those situations, care should be taken that the triclopyr or metsulfuron-methyl rates are adequate to control blackberry.

**Summary**

Blackberry is a native (usually) shrub or bramble that is a normal part of many landscapes. Its presence can be positive or negative, depending on the goals for the property. Each property manager must decide whether or to what extent blackberry fits into those goals. If it is determined that control is needed, careful planning is required to determine the best management strategy to match the severity of the infestation with available resources.

Always read and follow label directions. No discrimination is intended, and no endorsement is implied for any specific products. References to specific products or trade names are for educational purposes only.

**Literature Cited**


